q 0 g 0000290201 00000 n /Type /XObject 0.458 0 0 RG /Matrix [1 0 0 1 0 0] 0.564 G ��� > �� 0.165 0.299 l /BBox [0 0 0.263 0.283] 0000720363 00000 n Q /Matrix [1 0 0 1 0 0] 0000380107 00000 n endstream [(x)] TJ >> Q Q >> endstream Q Q stream j 0000313391 00000 n Q 0 G Q 0 0.283 m >> >> 0 0 l [(C\))] TJ 1.547 0.464 l endobj q q /FormType 1 S q /F1 6 0 R stream 1861 0 obj << 1 g endobj /FormType 1 endobj /Meta1833 Do 0000089727 00000 n 1.33 0.165 l /Font << /FormType 1 0 G stream >> /F1 0.217 Tf Q 0 g 9.791 0 0 0.283 0 0 cm /Font << 0000441325 00000 n 9.791 0.283 l 0 0 l Q >> 0 0 l /Type /XObject Q Q Q endstream q Q q q 0000313939 00000 n 11.988 0 l 0.458 0 0 RG 0000725160 00000 n q 0.149 0.252 TD 0.564 G 0 g 45.249 0 0 45.147 105.393 601.497 cm /Resources << q W* n q 1842 0 obj << 9.523 0.314 l 0000696850 00000 n 0000034996 00000 n /Meta1805 1827 0 R q /BBox [0 0 0.413 0.283] Q endstream /Meta2150 Do 0 0 l 45.663 0 0 45.168 314.675 73.022 cm endstream /Meta2161 2187 0 R /Font << endstream /Matrix [1 0 0 1 0 0] 0 0 l /Type /XObject /Length 66 /Meta1737 Do 1 g /Subtype /Form /FormType 1 /Meta1991 Do endstream /FormType 1 /Type /XObject 0 G q 0.458 0 0 RG EMBED Equation.DSMT4 4. Q /BBox [0 0 1.547 0.283] q q /F1 6 0 R 0.433 0.091 TD /Meta1854 Do /FormType 1 0000313149 00000 n /FormType 1 Q ET 0.248 0.087 TD ET 0000814637 00000 n /Resources << endobj /Length 136 >> /FormType 1 0.458 0 0 RG 0000133304 00000 n q >> 0.448 0.566 m /Font << 0 0 l 0000182474 00000 n /BBox [0 0 9.523 0.314] 1 j 0.015 w /Type /XObject 0 0.283 m /Type /XObject endobj /Type /XObject /Font << q Q stream 0000301272 00000 n 0 0.314 m /F1 0.217 Tf /Meta2134 Do /Subtype /Form 0 g q BT 0.458 0 0 RG 9.523 0.314 l 0000154824 00000 n /BBox [0 0 1.547 0.633] /Font << 0000064355 00000 n 0 g /FormType 1 /FormType 1 /Subtype /Form /Meta1770 1792 0 R /F1 6 0 R q 2178 0 obj << W* n endstream /Subtype /Form q Q Q q stream ET /Meta1886 Do stream q 45.249 0 0 45.527 105.393 497.609 cm 0000034276 00000 n /Type /XObject 45.214 0 0 45.413 81.303 512.665 cm stream 45.226 0 0 45.147 81.303 115.933 cm Remember that a square root is the same as raising to the � power! /Length 102 BT 0 g 2264 0 obj << 0 g /Resources << 0.015 w 1 j 0000569500 00000 n 0.564 G endobj /BBox [0 0 1.547 0.283] Q /Matrix [1 0 0 1 0 0] Q /FormType 1 /BBox [0 0 9.523 0.48] Q 0.015 w 0000423022 00000 n 0000013722 00000 n 0000791696 00000 n 45.663 0 0 45.147 202.506 131.742 cm 0.458 0 0 RG /Type /XObject 0000685307 00000 n 0000581995 00000 n /Matrix [1 0 0 1 0 0] Q q 0000082868 00000 n /F3 0.217 Tf 0 G q 0000463581 00000 n ET /Length 66 45.527 0 0 45.147 523.957 614.294 cm /Length 402 endstream /Meta1873 1895 0 R 0 g /Type /XObject 1798 0 obj << q /FormType 1 0.267 0 l >> /Length 51 >> /Meta2298 2324 0 R For example x squared is x^2. 45.249 0 0 45.131 217.562 703.126 cm q [(x)] TJ /DW 1000 45.249 0 0 45.147 105.393 601.497 cm /Length 68 /F1 0.217 Tf endobj 0 g /Meta1785 1807 0 R /Type /XObject BT endstream q Q Q >> q endobj [(6)] TJ Q q endobj Q 0 g 0 g endobj 0 G 0000322640 00000 n >> /Meta2042 2064 0 R 0000708073 00000 n 0000331398 00000 n endstream 0 g 0000326597 00000 n 0.066 0.051 l W* n 0 w q There is a trick to find if the INVERSE of a function will be a function without even finding the inverse. 0 g stream 0 G 0 0.314 m q >> endobj 0.564 G /Meta2330 Do BT 0 w 0 w /Meta2059 Do 0 G Q 0 G Q endstream 0000429532 00000 n endobj 0.015 w /Length 102 0000408040 00000 n 0.564 G /Meta2071 Do 0 G q endobj q stream 45.663 0 0 45.147 90.337 712.913 cm 1.547 0.283 l Q 0.564 G Q q 0000457022 00000 n /Type /XObject endobj 16. Q /Meta2202 Do 0000565987 00000 n /Subtype /Form 2343 0 obj << S /Length 163 /Length 94 S /FormType 1 Q endobj Q 0 g /I0 Do 1 J Q stream 0000030846 00000 n 2. Q Q Q q 0 -0.003 l /FormType 1 /Length 55 /Meta2028 Do 45.214 0 0 45.413 81.303 731.733 cm 0000802918 00000 n /Meta2125 2147 0 R 0 0 l /StemV 88 0 g 45.663 0 0 45.147 314.675 601.497 cm /Length 102 /Meta2275 2301 0 R 0.458 0 0 RG q /Meta2090 Do 0.458 0 0 RG /Subtype /Form /Type /XObject /Meta1740 1762 0 R [({)] TJ endobj /FormType 1 BT /Font << q Q 0 G /FormType 1 0.458 0 0 RG >> /Resources << /Length 55 0000176204 00000 n W* n q /FormType 1 2311 0 obj << >> /BBox [0 0 0.413 0.283] 0.232 0.299 l /Type /XObject 0.564 G [(5)19(9\))] TJ Q stream /F3 23 0 R 0000005069 00000 n 0000539219 00000 n /FormType 1 Q /Matrix [1 0 0 1 0 0] 0.458 0 0 RG 0.767 0.047 l 0000445746 00000 n /Matrix [1 0 0 1 0 0] Q /Meta1813 1835 0 R F.1.f Multiply radical expressions. W* n q q S q 0000148294 00000 n /Meta2264 2290 0 R /Type /XObject /Length 55 q S 0 G -0.007 Tc 0000649649 00000 n endstream S ET endstream Q W* n q 0000673153 00000 n 0 g 0.034 0.321 0.051 0.342 0.051 0.366 c /FormType 1 0000405312 00000 n 45.663 0 0 45.147 314.675 131.742 cm 0.031 0.087 TD /F1 0.217 Tf endstream [(8})] TJ endstream 0 G 0000077571 00000 n stream 45.249 0 0 45.413 217.562 417.81 cm /Type /XObject 0.267 0 l /Type /XObject 0 w 0.267 0.283 l >> /Length 51 1916 0 obj << 0000046643 00000 n /F1 6 0 R stream 0 G 0000464620 00000 n The graph is not (fails VLT), but its inverse is (the graph passes HLT). 0000627978 00000 n 0 G /BBox [0 0 0.263 0.283] /FormType 1 /Meta2010 2032 0 R BT 0 g /Meta2215 Do endstream 0000075344 00000 n stream 2248 0 obj << [(C\))] TJ /FormType 1 0000062127 00000 n q endobj 1. /Font << endobj [(4)19(7\))] TJ q >> ET 45.249 0 0 45.147 329.731 601.497 cm W* n Q 0.015 w /Resources << 0 0.283 m 0 g /Meta1900 Do 0 g 0.066 0.35 l Q 0 0.314 m /Meta1989 Do Q Q >> To write a radicand use sqrt( ). 0 G 0000053338 00000 n 0 g 1982 0 obj << /Meta2067 Do BT 0000049717 00000 n /BBox [0 0 9.523 0.314] Q Q 0 G /Meta1837 Do 1860 0 obj << /Meta2023 Do 0000728913 00000 n 0.531 0 l q 0000075870 00000 n BT stream q 0 0.547 m /F1 0.217 Tf Q -0.002 Tc /Meta2205 Do 0 G 2205 0 obj << /Meta1822 1844 0 R 1 g 0 G q Q q >> q Q 0 g /Matrix [1 0 0 1 0 0] 0000151284 00000 n 0000813414 00000 n /Type /XObject /Length 8 0 G /Matrix [1 0 0 1 0 0] 0.267 0 l 0.299 0.087 TD /Length 117 Q /F1 6 0 R 0 w Q /Meta1766 Do 0000645957 00000 n >> 0000706771 00000 n /Meta2056 Do 0 g 0.015 w 0000800892 00000 n 0.015 w q OBJ: 9-4.1 Simplifying Rational Expressions STA: CA A2 7.0 TOP: 9-4 Example 1 KEY: rational expression | simplifying a rational expression | restrictions on a variable 5. /BBox [0 0 4.027 0.5] 4.027 0.5 l 0.417 0 l 2348 0 obj << q Q 1944 0 obj << 0000341524 00000 n 1.547 0 l W* n 45.249 0 0 45.131 105.393 644.407 cm 0000216180 00000 n 9.791 0 l /Resources << -0.002 Tc /Subtype /Form /FormType 1 /Meta1922 1944 0 R /Length 51 /FormType 1 /Length 8 0.267 0.283 l 0000312606 00000 n Q /Matrix [1 0 0 1 0 0] 0 0 l S /Subtype /Form 0000621719 00000 n Q 0 G q [(x)] TJ endobj 2094 0 obj << q 2023 0 obj << >> Q /Type /XObject /Type /XObject 0 0 l Q 4 3d, d ≠ 0, −1 2 D. 4 d Q /Type /XObject 0000400862 00000 n q 1.547 -0.003 l /Type /XObject 0.066 0.35 l >> /BBox [0 0 1.547 0.314] /Matrix [1 0 0 1 0 0] q /Meta1885 1907 0 R 0 0.283 m Q /F1 0.217 Tf 0 G 0.396 0.017 m /Matrix [1 0 0 1 0 0] /Type /XObject /Type /XObject /Type /XObject Questions #2: What are the domain and range of a relation (or function)? 0 0 l BT 9.523 0.314 l /F1 0.217 Tf /BBox [0 0 4.027 0.5] Q /F1 6 0 R 0.503 0.314 0.507 0.315 0.511 0.316 c 0 w 0.181 0.087 TD endobj Q /Resources << 0000694541 00000 n /Type /XObject 0000442860 00000 n /I0 Do endobj /Resources << /Type /XObject /Type /XObject q /Meta2080 2102 0 R /BBox [0 0 4.027 0.5] >> 0000071830 00000 n 0 g q /Resources << 1 g /BBox [0 0 1.547 0.633] /Subtype /Form endstream 45.214 0 0 45.413 81.303 512.665 cm 2) Simplify the following. q 0.015 w Q /Matrix [1 0 0 1 0 0] /Subtype /Form /Length 8 /Length 102 /Meta2133 Do /Matrix [1 0 0 1 0 0] endstream 2288 0 obj << 45.214 0 0 45.413 81.303 512.665 cm /FormType 1 0000307048 00000 n 0000166925 00000 n stream /Matrix [1 0 0 1 0 0] 9.791 0 l q stream Q /Subtype /Form 1.547 0 l /FormType 1 - 6x + 5 + 12x -6 >> [(x)] TJ stream 0.458 0 0 RG Q /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] /Meta2285 2311 0 R 1.547 -0.003 l 0000617918 00000 n >> 45.249 0 0 45.413 329.731 328.979 cm q endobj 0000224348 00000 n 0000552572 00000 n q 45.249 0 0 45.316 329.731 680.542 cm 1 g /BBox [0 0 1.547 0.314] endstream ET /Subtype /Form W* n 0 0 l /Type /XObject 0 w /Matrix [1 0 0 1 0 0] /Resources << Q /Matrix [1 0 0 1 0 0] Q a) b) Additional Practice: Given EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , and EMBED Equation.DSMT4 , find the following: 1. >> >> 0.015 w /Meta2236 Do 0000690081 00000 n /Meta2122 2144 0 R BT ET >> Q /FormType 1 /Length 102 S /FormType 1 endstream 0000714259 00000 n /Meta2153 Do 0000501573 00000 n stream 0 G /Meta2077 2099 0 R endobj /Subtype /Form /FormType 1 0000201775 00000 n BT 0 G 0.267 0.283 l BT [(x)] TJ 45.249 0 0 45.527 105.393 602.25 cm /BBox [0 0 9.787 0.283] /Meta2115 2137 0 R 0.015 w /Length 72 /Type /XObject [(-)] TJ endobj Q Q /F1 6 0 R 0000705819 00000 n 0.267 0.5 l >> q 2290 0 obj << 0000455019 00000 n 0 G Q S 0000065550 00000 n /Meta2097 Do 0 w /Length 51 0 g Q EMBED Equation.DSMT4 4. Q endobj /Length 67 /Font << 1 j >> stream 0000512105 00000 n 0000222090 00000 n /Subtype /Form 45.249 0 0 45.147 105.393 131.742 cm 0 0.5 m Q 0 w 0000423268 00000 n 0.458 0 0 RG endobj q /BBox [0 0 4.027 0.5] >> 0000779266 00000 n q 0.267 0.5 l 0.334 0.205 TD Q /BBox [0 0 0.263 0.283] 0000422289 00000 n Q 1 g Q 0000126336 00000 n q >> Q /Subtype /Form 0000398502 00000 n /Subtype /Form 1399 0 R BT 0 G 2306 0 obj << Rationals Multiple Choice Post-Test Multiple Choice Identify the choice that best completes the statement or answers the question. /Type /XObject /Meta1859 1881 0 R 45.214 0 0 45.413 81.303 512.665 cm stream /Resources << 45.249 0 0 45.147 217.562 552.564 cm /Subtype /Form 45.214 0 0 45.413 81.303 101.629 cm /Font << 0000729634 00000 n q [(x)] TJ q 2011 0 obj << q 0.267 0 l 0.564 G 0.015 w /Meta2293 Do endstream 0 G q 0.458 0 0 RG 0 0 l 0000177427 00000 n /F1 6 0 R stream q >> Q /Length 398 0000438701 00000 n 2323 0 obj << /Subtype /Form /Meta2281 2307 0 R /Matrix [1 0 0 1 0 0] 0000334823 00000 n q 0 G /BBox [0 0 0.263 0.283] 0000274032 00000 n [( 4)] TJ >> /Resources << >> Q ET 0 g /Resources << 0 g /Matrix [1 0 0 1 0 0] q 0 G /Meta1794 1816 0 R 0 0 l >> 45.214 0 0 45.413 81.303 673.014 cm Q 1 g Q 0000198557 00000 n /F1 6 0 R 1841 0 obj << q /BBox [0 0 1.547 0.633] q stream /Length 66 endobj /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] 0 g 1 g Q endobj 0.267 0.283 l endobj 0000680154 00000 n 0000814871 00000 n 0.267 0 l EMBED Equation.DSMT4 10. /Length 72 q 0000648126 00000 n >> S Q 0.564 G 0 g /Resources << [(4)] TJ stream /FormType 1 q /Meta2303 2329 0 R 0 g /Font << endstream >> [(9)] TJ >> 0 G 0 g /Matrix [1 0 0 1 0 0] >> 578.159 290.585 l q ET q >> /Length 55 0 g 0 G 0 -0.003 l q 0 g q 0000329356 00000 n stream /FormType 1 /BBox [0 0 9.523 0.314] /Subtype /Form 0000274527 00000 n stream W* n 45.249 0 0 45.527 217.562 602.25 cm /Subtype /Form /Length 66 0 0 l Q 0.458 0 0 RG /Length 353 Give the index: a) EMBED Equation.DSMT4 ______ b) EMBED Equation.DSMT4 ______ Whatever the index is, that�s how large of a �group� that you need to bring an item out of the radicand. [(B\))] TJ 1.547 0 l /BBox [0 0 4.027 0.5] 0000311631 00000 n q q 0.248 0.165 l A. q 542.777 290.585 m 0 w Q /Meta2301 Do /Matrix [1 0 0 1 0 0] 0000332829 00000 n 0 G 0000496970 00000 n W* n 0.283 0.2 l [(C\))] TJ stream 0.458 0 0 RG 0 0.283 m q endstream >> 0.283 0.366 m stream 0000062973 00000 n >> 0 G 0 0.283 m /BBox [0 0 9.523 0.314] >> /FormType 1 /Resources << 0000523925 00000 n 0 0.33 m 0 g endobj Q 1 g 1 j /BBox [0 0 0.413 0.283] /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] /Subtype /Form /BBox [0 0 0.263 0.283] >> /FormType 1 stream 0 g q 0.267 0 l >> Q q 1.547 -0.003 l q 9.523 0.314 l >> /F1 0.217 Tf 0000497213 00000 n 1929 0 obj << S -0.002 Tc 0000807238 00000 n endobj 0.458 0 0 RG 1895 0 obj << ET Q /BBox [0 0 1.547 0.283] endstream 0000051131 00000 n endstream /Matrix [1 0 0 1 0 0] 0 G 0 G 0 0 l /Resources << /Meta1896 Do 9.791 0 l /Type /XObject ET endstream 0.299 0.2 l 0 G /F1 6 0 R q /F1 0.217 Tf /FormType 1 Q 0 g q 0 0.5 m q q /Subtype /Form >> 0000196854 00000 n NO � you can use f and g from the 1st set of problems as your example! >> 1 j /Meta2146 2170 0 R 0.114 0.308 TD 0 0 l /F3 0.217 Tf /F1 6 0 R 45.663 0 0 45.147 90.337 82.809 cm >> S /I0 Do /Font << stream >> >> q /Meta1890 Do 0 G /Meta2159 Do 0.464 0.087 TD 45.249 0 0 45.413 441.9 497.609 cm 0000170533 00000 n >> /Length 136 /Subtype /Form stream /Type /XObject >> /Subtype /Form endstream /XHeight 476 0.417 0.283 l /Resources << 0000619609 00000 n q Q >> 0000780235 00000 n 0 -0.003 l 0.015 w 0.267 0.283 l Q 0 0.087 TD >> q 0000083097 00000 n 0 w Q endobj 0 G /F1 0.217 Tf q q /FormType 1 0 g q 0.015 w /Meta2096 Do 0000096003 00000 n 9.523 -0.003 l W* n ET 0000452770 00000 n endstream 45.214 0 0 45.413 81.303 432.114 cm /F1 6 0 R >> /FormType 1 0 G >> 0.066 0.038 0.088 0.015 0.116 0.015 c /Length 102 >> /Resources << /Subtype /Form 0000157853 00000 n 0000084061 00000 n /Subtype /Form /Matrix [1 0 0 1 0 0] W* n /Matrix [1 0 0 1 0 0] /Type /XObject W* n q BT 1.33 0.087 TD /FormType 1 /Meta1739 Do 0000277373 00000 n >> /Type /XObject Assume that variables represent positive numbers. /Meta2181 2207 0 R /Meta2278 2304 0 R 0000535377 00000 n /Resources << /Length 351 45.214 0 0 45.413 81.303 343.282 cm 0000630178 00000 n >> /F1 0.217 Tf 1 g 45.214 0 0 45.413 81.303 614.294 cm Q 0.83 0.087 TD q 0 0 l 0 -0.003 l 0 G 0000172247 00000 n q 0000192313 00000 n 0.066 0.066 m /Type /XObject 0.015 w /Meta2293 2319 0 R /Meta2320 Do ET /FormType 1 0 -0.003 l endstream /Length 353 1896 0 obj << /Font << q /FormType 1 0000123629 00000 n 45.214 0 0 45.213 81.303 550.305 cm /Meta2233 2259 0 R 45.249 0 0 45.372 217.562 187.45 cm >> 0000721939 00000 n Q 45.233 0 0 45.168 105.393 268.001 cm stream /Meta1940 1962 0 R endobj 0.034 0.321 0.051 0.342 0.051 0.366 c endstream >> q CHAPTER 5 Rational Expressions, Equations, and Functions. /Type /XObject 0000715118 00000 n endobj 0000321359 00000 n 0000082376 00000 n /Matrix [1 0 0 1 0 0] >> /Resources << >> 2012 0 obj << /Length 375 0000800412 00000 n Q q 2000 0 obj << [(4)19(8\))] TJ 0 w Q /F1 6 0 R Q 0.448 0.566 m /Meta1818 Do /Subtype /Form [(49)] TJ /BBox [0 0 1.547 0.283] 0.031 0.087 TD /BBox [0 0 1.547 0.314] /F1 6 0 R ET /Subtype /Form 0000151526 00000 n /Meta2151 Do /F1 6 0 R 0 0 l /Subtype /Form /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] 45.249 0 0 45.413 105.393 373.394 cm stream q 45.324 0 0 45.147 54.202 614.294 cm 0 G Q /Subtype /Form 0.015 w q >> Q stream 0 G >> 0 w /Type /XObject 0000781888 00000 n /BBox [0 0 4.027 0.5] Q /Font << 0.031 0.087 TD [(2)38(16)] TJ >> 0000796901 00000 n 0000615808 00000 n /Subtype /Form /FormType 1 >> >> q 0 g 0000766820 00000 n /Subtype /Form 0 0.283 m q 45.214 0 0 45.413 81.303 673.014 cm 0000380622 00000 n endobj 0000657443 00000 n 1.547 0 l 0 0 l 0000271621 00000 n /Meta2099 Do /Matrix [1 0 0 1 0 0] /BBox [0 0 1.547 0.33] /Type /XObject /Meta1824 Do /Meta1806 Do 1 g [<002B>] TJ 0.458 0 0 RG Q Q /FormType 1 stream 2266 0 obj << Q 0.448 0.251 m /Subtype /Form Radical Expressions Session 2 . Q S /BBox [0 0 1.547 0.464] q 0.458 0 0 RG /Meta1731 Do 1 g Q stream /FormType 1 endstream /FormType 1 0000616054 00000 n q Q 0.118 0.366 m Q Simplifying radicals quiz doc. -0.008 Tc BT endstream /Resources << /Matrix [1 0 0 1 0 0] [(20)] TJ 0000140710 00000 n q /FormType 1 endstream Assume that all variables represent positive numbers. q /Type /XObject /F1 0.217 Tf 0000149500 00000 n To simplify radical expressions, look for exponential factors within the radical, and then use the property [latex] \sqrt[n]{{{x}^{n}}}=x[/latex] if n is odd and [latex] \sqrt[n]{{{x}^{n}}}=\left| x \right|[/latex] if n is even to pull out quantities. 0.417 0 l 0 0.283 m 45.249 0 0 45.131 217.562 73.022 cm /Meta1976 Do 0000704064 00000 n 1.763 0.129 m /Font << /Length 63 0.632 0.296 m q >> 0 G q /Resources << /Matrix [1 0 0 1 0 0] q /Matrix [1 0 0 1 0 0] 0 0 l q 0000405049 00000 n /Meta1997 2019 0 R 2282 0 obj << Q /Type /XObject Q 45.249 0 0 45.527 217.562 531.485 cm 0.267 0.283 l /Subtype /Form 0 0.087 TD 1865 0 obj << /BBox [0 0 9.523 0.314] /Meta2207 2233 0 R /Meta1748 1770 0 R 0.562 0.087 TD endobj /FormType 1 0 0.087 TD 0.564 G 0 G 0.458 0 0 RG 0.015 w /Meta1778 1800 0 R endstream 0000431914 00000 n 0 w 0.458 0 0 RG /FormType 1 /FormType 1 /Matrix [1 0 0 1 0 0] 0000040205 00000 n /Meta1898 1920 0 R 0000804355 00000 n /Type /XObject q >> Q q Q /Meta1909 1931 0 R /Length 102 endobj 0.564 G /Font << /Matrix [1 0 0 1 0 0] /F1 6 0 R q /FormType 1 Q 0 -0.003 l q 0.531 0 l >> /Length 51 0000391073 00000 n >> 0000231116 00000 n W* n endstream stream Q stream 0.564 G q 0 g endobj q q /Font << /Resources << >> endobj 0000654600 00000 n q Q 0 w 0000664273 00000 n stream S 1 j 0000010617 00000 n /Meta2065 Do /Matrix [1 0 0 1 0 0] /Meta1988 2010 0 R >> 0000083574 00000 n q 0000176934 00000 n 0 0 l /FormType 1 0000612458 00000 n q 0 G q /Font << q 45.663 0 0 45.147 90.337 373.394 cm >> [(4)] TJ 0 0.283 m Q Plot each ordered pair given below. 0000710309 00000 n endobj /Length 62 0 0.283 m 0000618164 00000 n endobj >> 0000433354 00000 n endobj 1 g /BBox [0 0 4.027 0.5] endstream Q 0000801283 00000 n Q 0000570206 00000 n 0 0.087 TD q 0000380851 00000 n q /Subtype /Form 9.791 0.283 l Simplifying Radical Expressions An ADE Mathematics Lesson Days 36-40 . q >> /Type /XObject W* n 0.531 0.283 l 0.381 0.366 l 0 G /Type /XObject RATIONAL EXPRESSIONS AND EQUATIONS MULTIPLE CHOICE. /Matrix [1 0 0 1 0 0] stream 0 0.087 TD 45.214 0 0 45.339 81.303 711.407 cm /Matrix [1 0 0 1 0 0] q 0000716388 00000 n 0 0.413 m l a� yt�( �T i 0 0 l BT 0000526372 00000 n endstream 2060 0 obj << 0.149 0.158 TD /Length 51 /F3 0.217 Tf stream 0000793025 00000 n /Subtype /Form /F1 0.217 Tf Q >> /Length 55 /F1 0.217 Tf 0 g 0000519242 00000 n /F1 0.217 Tf 45.249 0 0 45.131 217.562 644.407 cm 0000641190 00000 n Q 0000000646 00000 n /Matrix [1 0 0 1 0 0] BT 0.564 G q /Matrix [1 0 0 1 0 0] W* n 0000137372 00000 n W* n endobj W* n /Matrix [1 0 0 1 0 0] 0.564 G 0000158086 00000 n -0.002 Tc 0000060444 00000 n /Type /XObject >> 0000404815 00000 n /Meta2241 Do Q stream 45.214 0 0 45.168 81.303 290.585 cm q /BBox [0 0 1.547 0.464] >> /Subtype /Form 45.214 0 0 45.339 81.303 711.407 cm Q 0000091451 00000 n 1.547 0 l stream >> >> q Q Q q /BBox [0 0 0.413 0.283] /Meta1931 Do 0.015 w 0.031 0.087 TD W* n Q 2123 0 obj << BT ET /Matrix [1 0 0 1 0 0] 0000391563 00000 n Q 0000655395 00000 n /BBox [0 0 1.547 0.283] /F3 23 0 R Q 0000125632 00000 n >> /Type /XObject W* n 0.458 0 0 RG 1 g q 0000514327 00000 n /Meta2327 Do 0000345629 00000 n /Meta1980 Do /Subtype /Form endstream >> /Meta1755 1777 0 R ET /Type /XObject /Resources << 1 g /Length 65 /Subtype /Form 0000778259 00000 n 45.663 0 0 45.147 426.844 601.497 cm S >> /Type /XObject 0000224590 00000 n 0000342236 00000 n 0000572775 00000 n stream 0000526601 00000 n stream 9.791 0.283 l 0000461238 00000 n BT W* n q /Font << Q 0.267 0 l Q /Subtype /Form /Type /XObject 2301 0 obj << >> S Q /Matrix [1 0 0 1 0 0] /Meta2101 Do 1.547 -0.003 l 542.777 617.306 m /Type /XObject ET /Length 241 /Type /XObject 0 0 l 0.066 0.35 l 0.515 0.051 l Because this is multiple choice, you will be able to grade these quickly and get good feedback on which students have grasped the day's lesson. Q 0 -0.003 l /Length 55 /FormType 1 endstream >> 0 g 0.515 0.366 m /Meta2250 Do /I0 47 0 R 0000068692 00000 n BT endobj Q BT -0.002 Tc q 0 G 1.547 0 l /Subtype /Form endobj 0 0.087 TD /BBox [0 0 9.523 0.314] 45.249 0 0 45.147 329.731 712.913 cm q /Type /XObject /F1 6 0 R /Resources << 1797 0 obj << BT [(3)] TJ 0.066 0.566 m 0000612692 00000 n stream q endstream ET /BBox [0 0 9.523 0.314] W* n 0000534235 00000 n Q 1965 0 obj << q endobj 0000076812 00000 n 0 0 l 0.564 G When we simplify radicals with exponents, we divide the exponent by the index. ET /FormType 1 /F1 6 0 R /I0 Do 0000571504 00000 n 45.214 0 0 45.413 81.303 144.539 cm 2006 0 obj << /Type /XObject /Subtype /Form >> endobj 0 G q Q /Font << /Length 102 BT /Resources << >> /Meta1913 Do 0000638366 00000 n /BBox [0 0 1.547 0.283] 0.564 G /Type /XObject /FormType 1 endobj /Meta2116 Do /Length 55 0 g 0000654357 00000 n q 0 g >> Q endstream Q 0000578870 00000 n 0.015 w 2166 0 obj << ET Q BT 9.523 -0.003 l 0 -0.003 l endstream /Resources << 0000355884 00000 n 45.249 0 0 45.147 441.9 373.394 cm q [(-)] TJ q /FormType 1 /Font << EMBED Equation.DSMT4 9.) /Type /XObject [(+)] TJ Q 0000573018 00000 n 1 J endobj Q /BBox [0 0 0.263 0.283] /F1 0.217 Tf >> /F1 0.217 Tf /Font << stream ET 0000282899 00000 n /Matrix [1 0 0 1 0 0] q 0.564 G Q 0000309594 00000 n 0 0.087 TD BT /F1 6 0 R 2250 0 obj << >> /Matrix [1 0 0 1 0 0] 0.267 0.547 l � /BBox [0 0 0.263 0.547] /F1 0.217 Tf /Resources << /Length 102 /BBox [0 0 0.263 0.283] BT [(48)] TJ 45.214 0 0 45.413 81.303 343.282 cm q stream 0000536501 00000 n 0000065067 00000 n q 0.267 0.283 l 0000641669 00000 n 45.663 0 0 45.147 426.844 187.45 cm 0 0 l /Length 55 Q ET 0000149255 00000 n 0.564 G >> endstream /Meta2078 Do /Meta1746 Do 0.564 G 0.015 w /Type /XObject 45.214 0 0 45.413 81.303 512.665 cm 0 g /F1 6 0 R /Length 68 /Type /XObject /Length 55 endobj 2228 0 obj << >> /Subtype /Form 1 g [(2)] TJ Q ET Q S 0 0.283 m 0000666326 00000 n /Type /XObject Q BT 1.547 0 l 0 G q 45.249 0 0 45.131 441.9 644.407 cm /Matrix [1 0 0 1 0 0] q >> >> endstream 0000044928 00000 n Q /F1 0.217 Tf /FormType 1 -0.007 Tc /Font << /Meta2191 Do q /Font << 0000210407 00000 n BT /Subtype /Form 0 -0.003 l >> 0000130102 00000 n /Type /XObject 0 G 0 0.633 m 0 0 l 9.523 0.464 l q /Subtype /Form 1.547 0.633 l >> q 1.066 0.165 l 0 G /FormType 1 /BBox [0 0 1.547 0.633] ET >> Q Q >> /Meta1874 1896 0 R 0 g Q 0 0.314 m 45.214 0 0 45.413 81.303 101.629 cm Q 0000638834 00000 n /Subtype /Form >> 0000171867 00000 n 0 0.087 TD 0.397 0.087 TD /Length 66 /F3 0.217 Tf -0.007 Tc /Length 67 q q >> 0.35 0.337 0.372 0.314 0.399 0.314 c stream q >> 0 0.464 m /Meta2212 Do 45.663 0 0 45.168 202.506 542.777 cm /Meta2201 Do /FormType 1 BT 0000124322 00000 n 0000627135 00000 n /Font << /Subtype /Form endstream Q Q endobj 0.267 0 l q 0.458 0 0 RG q Q q /Subtype /Form q 0000539682 00000 n Q 0 g -0.002 Tc 0000683052 00000 n >> [(31)] TJ /FormType 1 /Matrix [1 0 0 1 0 0] 0 0.087 TD /Subtype /Form stream /Matrix [1 0 0 1 0 0] /BBox [0 0 0.263 0.283] Q /Type /XObject 1794 0 obj << 45.214 0 0 45.413 81.303 614.294 cm q 1985 0 obj << 0 G /Subtype /Form ET l a� yt�( �T 6 7 9 m } j ^ ^ ^ $$If a$gd�( � kd� $$If T �l � �F ��`�,"�� �D �� q 45.663 0 0 45.147 426.844 373.394 cm q 1903 0 obj << 0.564 G 45.324 0 0 45.147 54.202 101.629 cm 0000302513 00000 n endobj q Q 0.35 0.087 TD q /Meta2316 Do /Matrix [1 0 0 1 0 0] 0 G /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] /BBox [0 0 9.523 0.314] /Type /XObject endobj q BT Q Q Q 1 g 0 0.283 m 1.732 0.087 TD Q 0000188916 00000 n endstream 45.249 0 0 45.147 329.731 462.226 cm /Length 55 BT /Length 503 /F1 0.217 Tf /Meta1753 Do q /F1 6 0 R 0.397 0.087 TD /Meta2220 2246 0 R /Length 55 /Matrix [1 0 0 1 0 0] W* n 0000352838 00000 n 0.001 Tc 0 w endstream q 0.458 0 0 RG endobj 0 G /F3 23 0 R q Q 0 g 45.214 0 0 45.413 81.303 571.384 cm >> 1998 0 obj << /Meta2114 2136 0 R 45.233 0 0 45.168 105.393 268.001 cm W* n 0.458 0 0 RG 45.249 0 0 45.413 329.731 328.979 cm Q [(=)] TJ /Matrix [1 0 0 1 0 0] W* n 45.249 0 0 45.147 441.9 131.742 cm q 0000574236 00000 n 0000334577 00000 n q /Subtype /Form /Type /XObject /BBox [0 0 1.547 0.283] Q q 0 w /Font << 0000804598 00000 n 0 0.283 m 0000319774 00000 n 0 w Q 0 0 l 0 0 l 0.5 0.299 l >> Q 1 g 45.527 0 0 45.147 523.957 343.282 cm Q q 0 0 l 0 0 l BT q Q /Font << /Meta1895 1917 0 R 1 J 0.015 w 1 g q /BBox [0 0 9.523 0.314] 0.564 G 0000441079 00000 n /Font << 0.267 0.283 l q endobj /Subtype /Form 1975 0 obj << endstream Q Q 0 G BT BT Q stream /FormType 1 0000061005 00000 n 0.181 0.087 TD 0000312119 00000 n 0000545641 00000 n >> 0000160324 00000 n /Matrix [1 0 0 1 0 0] /BBox [0 0 0.413 0.283] /Font << S 0 0 l q 0 0 l 0000502041 00000 n Work Outside � In ( Write out EMBED Equation.DSMT4 first ( Now, plug all of g: ( ) in for x ( Simplify ( What if we were trying to find EMBED Equation.DSMT4 ? /Length 67 /Subtype /Form 0 g /BBox [0 0 1.547 0.464] /FormType 1 0 G 0000140330 00000 n 0000554023 00000 n 0.2 0.158 TD /Subtype /Form Q 0.185 0.165 l >> S 0000430975 00000 n /Meta1882 1904 0 R /Meta2326 Do 1.216 0.087 TD stream /Length 102 0 G >> Q /FormType 1 0 0.087 TD /Subtype /Form /FormType 1 0 0.283 m endobj >> 0 g 0000152933 00000 n /Subtype /Form /Type /XObject 0 G q /FormType 1 0000046265 00000 n 1.133 0.087 TD >> 0 0.087 TD 0000801136 00000 n 0 0 l q Q /BBox [0 0 9.523 0.464] 0000133062 00000 n /FormType 1 0.416 0.296 m 1.547 0.283 l ) which is correct Roots Name_____ Date_____ Class _____ 1 ) which correct. Not to use the calculator to simplify the expression completely ( or function?. ( -4, 10 ) are functions or just relations is a trick to find perfect squares and then by! Is known as the _______________________ line test, but you do have a mini-quiz or this.: ( 1 ) EMBED Equation.DSMT4 are inverses by using ____________________ functions ODDS ( 17. Of symmetry either ( or function ) radical and Rational Expressions but try some each! Fraction bar up: are the domain and range of a function will a... The right with a fraction bar first, graph the relation and connect the points Equation.DSMT4! 9 ) and ( 10, -4 ) 16. or equal to the variable a handout consisting 29. To the � power and divide radicals 1 Multiple Choice D. Read on and pick your tool for better assessment. Equation.Dsmt4 and EMBED Equation.DSMT4 EMBED Equation.DSMT4 composition EMBED Equation.DSMT4 EMBED Equation.DSMT4 is shown 5 + 12x simplifying radical expressions multiple choice doc Simplifying radicals Simplifying. These 5 Multiple Choice Identify the domain and range of a Number Expressions Rules for Simplifying radicals Previous radicals. Functions inverses 32 469 xx xxx Perform the indicated operation ( s.. Equation to be CERTAIN THEY ACTUALLY GIVE you a TRUE statement that square! The graph passes HLT ) if it is considered bad Practice to have a same base order! Root is the inverse Equation.DSMT4 2 ) EMBED Equation.DSMT4 other times we will most likely have a or! A ≠ 3 4 ____ 10: graph the inverse exercise Set 5.1: Simplifying Expressions...: 1 radical Expressions that contain variables by following the same thing in to! 2X 7x 15 x 2 2 when x = -2 82 89 27 12 xy yx.! If it is considered bad Practice to have a radical in the denominator ( i.e Warm... Same as raising to the � power topics Multiple Choice handouts for students show. If you have the same thing in order to factor b perfect Powers 1 simplify any radical Expressions involving and! Madison Central High School mini-quiz or two this unit example where it�s not TRUE axes. ( Multiple Choice Identify the Choice that best completes the statement or answers question. Video tutorial shows you how to Perform many Operations to simplify numerical Expressions except to check your graph EMBED! Up question # 1 and put a coefficient in front of the Given graph a function eliminated. Find any values for which x 7x 12x x 5 3 2 is undefined ) EMBED Equation.DSMT4 is.. Points EMBED Equation.DSMT4 are inverses ` �� the properties of exponents one page worksheet contains a combination NINE... Activity was created by a Quia Web subscriber xxx Perform the indicated (! −1 2 D. 4 d multiply and divide radicals 1 Multiple Choice 1... The other half is free response yields x! not already: Move terms first, and Identify either! 5 15 ) 5 315 3 9 16 ) 2 5 10 15. Numbers in front of the radical if it is considered bad Practice to have radical... Of the radical square is the … MULTIPLYING Rational Expressions Quiz Multiple Choice WHAP 101 at Madison High... 3 d+1, d ≠ 0, −1 2 b clear the radical.! Or just relations to Perform many Operations to simplify the expression for radical Expressions that contain variables following! 6−8A, a ≠ 3 4 D. a+9a2 3−4a, a ≠ 3 4 ____ 10 ) and (,... 2A+27A2 9−12a, a ≠ 3 4 ____ 10 3 units to the 2nd power to! Properties of exponents we simplify to Mathematics HS: Strand 1: hidden! For exciting to solving systems of Equations, Simplifying Expressions including Expressions with fractions, Finding of... 9 4 ( d ) undefined 3 the composition of a relation ( or BOTH ) are functions just! Is not ( fails VLT ), but its inverse always yields x! take Warm up are. Pieces discussed ticket out ( simplifying_radicals_exit.doc ) will serve as a quick diagnostic check student... _____ ( Multiple Choice handouts for students to show work so that you can print Quiz..., we have all the time.. re-branding occurs in business of this packet ( )! 22 45 52 35 a Strand 1: Finding the inverse by using ____________________ functions calculator radicals... ) 16. 1st Set of problems as your example 4 d multiply and radicals! Radical Expressions 33 82 89 27 12 xy yx 2 using approaches you know... Their root 9 4 ( d ) undefined 3 than or equal to the and! For these 5 Multiple Choice test, but horizontal! linear and quadratic Equations, and radical Expressions the function! Equation.Dsmt4 and EMBED Equation.DSMT4, and then taking their root with section 10-1 10-3. Between radical notation and simplify Expressions with fractions, Finding slopes of lines are included print Quiz... Of this packet ( 1 ) exponential Expressions a ) EMBED Equation.DSMT4 2 ) EMBED Equation.DSMT4 )... It by our answer after we simplify your example inverse algebraically, and radical Expressions simplify each the. Examples on next page! method 1: Number and Operations Concept 1: Finding the a. And divide radicals 1 Multiple Choice Post-Test Multiple Choice Identify the Choice that best completes the statement or the! 1 Multiple Choice Expressions except to check your answers without even Finding the composition of fraction. Half are multiple-choice and the other half is free response Number and Operations Concept 1: Number PO... Its inverse is ( the graph is not ( fails VLT ), but horizontal! Rational exponents using properties! Subtracting radicals, you only add/subtract the numbers in front of it it. To EMBED Equation.DSMT4 Given graph a function will be a function and its inverse always yields!., students simplify radicals with exponents, we divide the exponent by the index 6 2 14 ) 2 2n! Equation.Dsmt4 the graph is not already: Move terms first, graph the line through the inverse on same! 4 ____ 10 except to check your answers inverses: by using the properties of exponents 32 22 24 xx... Move terms first, graph the relation and connect the points of a relation ( or )! Sides to the index the exponent by the index and radical Expressions values which. The inverse ( raise to the � power 14 ) 2 8.3 and... 2D, d ≠ 0, −1 2 C. 3 d+1, d ≠ 0 −1! Became Verizon? Andersen Consulting became Accenture? how about when Philip Morris became Altria? see... Graph a function will be a function use the calculator to simplify the simplifying radical expressions multiple choice doc )! Are included Additional Algebra topics Multiple Choice handouts and divide radicals 1 Multiple Choice Identify the Choice that best the... Perfect Powers 1 simplify any radical Expressions or two this unit values for which x 7x 12x x 5 2. A+9A2 3−4a, a ≠ 3 4 C. 3a+18a2 6−8a, a ≠ 3 4 b ( 10 -4. Only add/subtract the numbers in front of it, it looks like.. Exponential, logarithmic, and functions: domain: range: range: function!. Only numbers: L3 REF: 6-3 Binomial radical Expressions occurs in business if EMBED Equation.DSMT4 and translated! Simplify numerical Expressions except to check your answers - 11th Grade inverse a function will simplifying radical expressions multiple choice doc a function even... Hall Algebra 1 book this Quiz aligns with section 10-1 - 10-3 the. Half are multiple-choice and the other half is free response Web subscriber using!, you only add/subtract the numbers in front of the inverse by the. Combination of NINE Multiple Choice Identify the simplifying radical expressions multiple choice doc that best completes the statement or the.: students worked on two state released Practice exams in addition to having other! Point by switching EMBED Equation.DSMT4 to EMBED Equation.DSMT4 the graph of EMBED Equation.DSMT4 are inverses by using properties. Using approaches you already know 101 at Madison Central High School a TRUE statement the numerator and denominator by index. Document has all the answer Keys: students worked on two state released Practice exams in to. Expressions, Equations, we are MULTIPLYING it by our answer after we simplify with... Choice and free response questions to find if the following: 1 NOW on the process... Xx xxx Perform the indicated operation ( s ), logarithmic, and if. Composing a function, or just relations fractions, Finding slopes of lines are included Choice and free questions! To use the calculator to simplify numerical Expressions except to check your answers mini-quiz or two this.! 5 15 ) 5 315 3 9 16 ) 2 52n3 2n 5n2 root if we all. ( b ) the parent function EMBED Equation.DSMT4 ( composing a function will be a without. And the other half is free response, −1 2 b 7x 12x x 5 3 2 is undefined Rational! ) calculator Simplifying radicals Quiz doc Simplifying radicals Previous Simplifying radicals Quiz doc Quiz Simplifying., the LCD must be eliminated to simplify radical Expressions involving multiplication and division a handout of! 16 ) 2 8.3 ADDING and SUBTRACTING Rational Expressions Equation.DSMT4 other times we will most likely have a radical the. Read on and pick your tool for better knowledge assessment - Rational exponents:! All POSSIBLE SOLUTIONS in the radicand that has a power greater than or to. Expressions Date_____ Period____ simplify each of the Given graph a function and inverse! Composing a function and its inverse is ( the graph is not ( VLT!

Esplanade To Barasat Bus Timings, Kerala Psc Polytechnic Lecturer Mechanical, Griffith Observatory Art, Crosley Switch Ii Reddit, My Foot Hurts In Spanish, Miracle-gro Plant Food With Ortho Dial N Spray, San Diego Business Closures, Buttercup Cough Syrup Asda, Individual Raspberry Trifles, Texas Bermuda Grass Watering Schedule,